
LXXVII Olimpiada Matematyczna
Rozwiązania zadań konkursowych
zawodów stopnia drugiego

1. Wyznaczyć wszystkie dodatnie liczby całkowite n o następującej własno-
ści: istnieją dodatnia liczba całkowita k oraz liczby pierwsze p1, p2, . . . , pn, q
(niekoniecznie różne) spełniające równanie
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Autor zadania: Emil Łasocha

Rozwiązanie: Oznaczmy lewą stronę równania przez L, a prawą przez P . Jeśli
pi = 2 dla pewnego i, to L ⩾ 1

2
. Stąd P ⩾ 1

2
, tj.
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2
⩽

q

q2 + 1
⇐⇒ q2 + 1 ⩽ 2q ⇐⇒ (q − 1)2 ⩽ 0 ⇐⇒ q = 1.

Sprzeczność, bo q jest liczbą pierwszą.
Wobec tego liczby p1, p2, . . . , pn są nieparzystymi liczbami pierwszymi.

Wykażemy, że q = 2. Załóżmy przeciwnie — liczba q jest nieparzysta. Po
przemnożeniu równania przez p1p2 . . . pn(q2+1) otrzymujemy równość, w któ-
rej lewa strona jest parzysta (bo dzieli się przez parzystą liczbę q2 + 1), a
prawa jest nieparzysta — sprzeczność. Zatem q = 2 i P = 2

5
.

Liczba k nie jest podzielna przez żadną z liczb pi, gdyż wtedy L ⩾ 1.
Ponadto, pi występuje wśród liczb p1, p2, . . . , pn mniej niż pi razy — w prze-
ciwnym razie L ⩾ 1. Rozważmy więc liczbę pi i powiedzmy, że występuje
ona wśród liczb p1, p2, . . . , pn dokładnie s razy (mamy więc 1 ⩽ s < pi).
Sprowadzając ułamki w wyrażeniu
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do wspólnego mianownika zapisujemy L w postaci ułamka, którego mianow-
nik dzieli się przez pi, a licznik nie — jest on bowiem sumą liczb podzielnych
przez pi oraz liczby sk · A, gdzie A jest iloczynem liczb pierwszych różnych
od pi. Skądinąd wiemy, że L = P = 2

5
, co jest ułamkiem zapisanym w postaci

nieskracalnej. Stąd wniosek, że pi jest dzielnikiem piątki, tj. pi = 5.



Wykazaliśmy więc, że pi = 5 dla każdego i = 1, 2, . . . , n, a zatem L = kn
5
.

Dochodzimy do równania kn = 2, które ma dwa rozwiązania: (k, n) = (1, 2)
oraz (k, n) = (2, 1). Bezpośrednim rachunkiem sprawdzamy, że dla n = 1,
k = 2, p1 = 5, q = 2 oraz dla n = 2, k = 1, p1 = p2 = 5, q = 2 warunki
zadania są spełnione.
Odpowiedź: Jedyne możliwe wartości n to 1 i 2.

2. Dana jest liczba całkowita n ⩾ 2. Załóżmy, że liczby rzeczywiste a1, a2,
. . ., an spełniają następujące warunki:

� a21 + a22 + . . .+ a2n = n,

�

1

k
⩽ ak ⩽ k dla każdego k = 1, 2, . . . , n.

Wykazać, że
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k
ak > 2n.

Autor zadania: Piotr Nayar

Rozwiązanie: Z założeń wynika, że
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dla każdego k = 1, 2, . . . , n, przy czym równość zachodzi wtedy i tylko wtedy,
gdy ak = k lub ak = 1

k
. Powyższa nierówność jest równoważna nierówności

k2 + 1

k
ak ⩾ 1 + a2k.

Wobec tego
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Pozostaje wykazać, że w powyższej nierówności nie może zajść równość.
Dzieje się tak, gdy dla każdego k mamy ak = k lub ak = 1

k
.

Załóżmy więc, że dla każdego k mamy ak = k lub ak = 1
k
. Oznaczmy

przez I zbiór wskaźników k ⩾ 2, dla których ak = 1
k
. Wówczas zbiór I jest



niepusty, bo należy do niego n (mamy bowiem n2 > n =
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więc liczba
∑
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2
k nie jest całkowita. Stąd
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2
k również nie jest całko-

wita. Sprzeczność z założeniem, że ta suma jest równa n.

3. Dany jest ostrosłup ABCDS o podstawie czworokąta wypukłego ABCD.
Załóżmy, że dwusieczne kątów płaskich BAD, BSD i BCD mają punkt
wspólny. Wykazać, że środki okręgów wpisanych w trójkąty ABS, BCS,
CDS, DAS leżą na jednej płaszczyźnie.

Autor zadania: Michał Kieza

Rozwiązanie: Oznaczmy środki okręgów wpisanych w ściany ABS, BCS,
CDS, DAS kolejno przez I1, I2, I3, I4. Oznaczmy punkt wspólny dwusiecz-
nych kątów płaskich BAD, BCD, BSD przez X. Punkt X leży w części
wspólnej płaszczyzn ABCD i BDS, czyli na prostej BD. Z twierdzenia o
dwusiecznej wynika, że ułamki
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są równe. Ich wspólną wartość oznaczymy przez λ.
Jeśli λ = 1, to ostrosłup ABCDS jest symetryczny względem płaszczyzny

ACS. W konsekwencji punkt I1 jest symetryczny do I4 względem ACS i
analogicznie I2 jest symetryczny do I3 względem tej płaszczyzny. Stąd proste
I1I4 i I2I3 są równoległe (obie są prostopadłe do płaszczyzny ACS), a więc
są zawarte w jednej płaszczyźnie.
Od teraz rozważamy przypadek λ ̸= 1. Mamy
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.

Stąd i z twierdzenia o dwusiecznej wynika, że proste BI1 i DI4 przecinają
krawędźAS w tym samym punkcie, który oznaczymy przez T . Wykorzystując
ponownie twierdzenie o dwusiecznej obliczamy
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i analogicznie
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Stąd
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Z twierdzenia Menelaosa zastosowanego do trójkąta BTD i prostej I1I4 wy-
nika więc, że prosta I1I4 przecina prostą BD w takim punkcie Y nieleżącym
na odcinku BD, że BY

Y D
= λ.

W pełni analogicznie wykazujemy, że I2I3 przecina prostą BD w punkcie
Y ′ nieleżącym na odcinku BD spełniającym równość BY ′

Y ′D
= λ. To znaczy, że

punkty Y i Y ′ się pokrywają.
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4. Dany jest nierównoramienny trójkąt ABC wpisany w okrąg Ω o środku
O. PunktM jest środkiem tego łuku BC okręgu Ω, który nie zawiera punktu
A. Okrąg opisany na trójkącie AOM przecina proste AB i AC odpowiednio w
punktach P ̸= A iQ ̸= A. Załóżmy, że punkty A, B, P leżą w tej kolejności na
prostej AB, a punkty Q, A, C leżą w tej kolejności na prostej AC. Wykazać,
że symetralna odcinka PQ przecina prostą prostopadłą do BC przechodzącą
przez punkt A w punkcie leżącym na okręgu Ω.

Autor zadania: Dominik Burek

Rozwiązanie: Niech X ̸= A będzie takim punktem na Ω, że AX ⊥ BC.
Zauważmy, że<)MPQ = 180◦−<)QAM = <)MAC = <)PAM = <)PQM ,

zatem trójkąt PQM jest równoramienny i PM = QM . Aby wykazać tezę
wystarczy zatem udowodnić, że prosta MX jest dwusieczną kąta QMP .
Oznaczmy <)BAC = 2α, <)CBA = 2β i <)ACB = 2γ. Wówczas zachodzi

równość α+β+γ = 90◦, gdyż kąty trójkąta ABC sumują się do 180◦. Mamy

<)QMP = <)QAP = 180◦ −<)PAC = 180◦ − 2α = 2β + 2γ.



Wystarczy zatem wykazać, że <)QMX = β + γ. Obliczmy najpierw miary
kątów OMX i OMQ. Mamy

<)OMX = 90◦ − 1

2
<)XOM = 90◦ −<)XAM = 90◦ − (<)BAM −<)BAX) =

= 90◦ − (α− (90◦ − 2β)) = 180◦ − α− 2β = 90◦ − β + γ

oraz

<)OMQ = 180◦ −<)QAO = <)OAC = 90◦ − 1

2
<)COA = 90◦ − 2β.

W takim razie

<)QMX = <)OMX −<)OMQ = 90◦ − β + γ − (90◦ − 2β) = β + γ,

co kończy dowód.
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5. Dana jest dodatnia liczba całkowita n ⩾ 2. Na płaszczyźnie zaznaczono
2n punktów A1, A2, . . ., An, B1, B2, . . ., Bn, przy czym spełnione są nastę-
pujące dwa warunki:

(i) AiBi > 101 dla każdego 1 ⩽ i ⩽ n,

(ii) AiBj ⩽ 100 dla każdych 1 ⩽ i < j ⩽ n.



Wykazać, że n ⩽ 106.

Autor zadania: Wojciech Nadara

Rozwiązanie: Zauważmy najpierw, że dla dowolnych 1 ⩽ i < j ⩽ n zachodzi
BiBj > 1. Wynika to z nierówności trójkąta, gdyż

101 < AiBi ⩽ AiBj +BiBj ⩽ 100 +BiBj.

Jeżeli zatem zdefiniujemy koła K1, K2, . . . , Kn o środkach odpowiednio B1,
B2, . . ., Bn, każde o promieniu 1

2
, to będą one rozłączne.

Zauważmy ponadto, że skoro A1Bi ⩽ 100 dla i = 2, . . . , n, to koła
K2, . . . , Kn mieszczą się w kole L o środku A1 i promieniu 100 + 1

2
= 201

2
.

Stąd wniosek, że P (K2) + . . . + P (Kn) ⩽ P (L), gdzie P (C) oznacza pole
koła C. Jako że L ma 201 razy większy promień niż każde z kół Ki, otrzy-
mujemy P (L) = 2012P (Ki) dla dowolnego 1 ⩽ i ⩽ n. Wnioskujemy za-
tem, że P (L) ⩾ P (K2) + . . . + P (Kn) = (n − 1)P (K2) = n−1

2012
P (L), zatem

n ⩽ 2012 + 1 = 40402 < 106, co kończy dowód.

6. Dana jest liczba całkowita n ⩾ 2. Załóżmy, że dodatnie liczby całkowite
a1 < a2 < . . . < an spełniają równość
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dla pewnych x1, x2, . . . , xn ∈ {1, 2}. Udowodnić, że ai ⩽ (2n)2
i−1
dla każdego

i = 1, 2, . . . , n.

Autor zadania: Dominik Burek

Rozwiązanie: Mamy a1 ⩽ ak i xk ⩽ 2 dla każdego k = 1, 2, . . . , n. Stąd
xk
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⩽

2
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dla k = 1, 2, . . . , n i wobec tego

1 =
n∑

k=1

xk

ak
⩽

2n

a1
.

To daje a1 ⩽ 2n, czyli tezę dla i = 1.
Załóżmy teraz, że 1 ⩽ i ⩽ n−1 oraz aj ⩽ (2n)2

j−1
dla każdego 1 ⩽ j ⩽ i.

Wykażemy, że ai+1 ⩽ (2n)2
i
, co na mocy zasady indukcji matematycznej

zakończy rozwiązanie zadania.



Zauważmy, że

1−
i∑

k=1

xk

ak
=

n∑
k=i+1

xk

ak
> 0.

Lewa strona powyższej nierówności jest dodatnią liczbą wymierną, którą
można zapisać w postaci ułamka o mianowniku a1a2 . . . ai. W takim razie
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Z założenia indukcyjnego mamy
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Wobec tego ai+1 ⩽ (2n)2
i
, co kończy krok indukcyjny i rozwiązanie zadania.


