LXVI Olimpiada Matematyczna

Rozwigzania zadan konkursowych

zawodow stopnia drugiego
20 lutego 2015 r. (pierwszy dzien zawodow)

Zadanie 1. Punkty E, F, G leza odpowiednio na bokach BC, CA, AB tréj-
kata ABC, przy czym 2AG = GB, 2BE = EC oraz 2CF = FA.
Punkty P i @ leza na odcinkach EG i FG odpowiednio, przy czym
2EP = PG oraz 2GQ = QF. Udowodnié, ze czworokat AGPQ jest
réwnolegtobokiem.
Rozwigzanie

Oznaczmy przez L, S odpowiednio srodki odcinkow FA, FG. Wow-
czas LS||AG oraz LS = %AG; dalej, CL = %C’A, CE = %C’B; stad
LE||AB oraz LE = %AB =2AG. Wreszcie GQ = %GS, GP = %GE;
stad QP||SE oraz QP = 3SE.

Punkty L, S, E sa wsp6tliniowe; tak samo punkty A, G, B. Uzyskane
réwnolegtosci daja wniosek, ze QP||AG. Ponadto

QP — §5E _ ;(LE _LS) = %(ZAG _ %AG) _ Ac.

Z tych zaleznosci juz wynika, ze AGPQ to réwnolegtobok.
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Zadanie 2. Dana jest liczba naturalna A > 1. Niech a; = A4, a,4; = A%,
by = AATY b, = 2 dlan = 1,2,3,... Dowiesé, ze dla kazdej
liczby calkow1tej n > 1 zachodzi nieréwnosé

an < b, .

Rozwigzanie

Wszystkie wyrazy ciagu (a,) sa liczbami naturalnymi wigkszymi
od 1. Stad dla n > 2 mamy a, = A%t > A% > 22, Poniewaz takze

= A4 > 22 widzimy, ze a, >4 dlan=1,2,3,....

Udowodnimy teze silniejsza niz wymagana w zadaniu. Pokazemy
indukcyjnie, ze dlan = 1,2, 3, ... zachodzi nieréwnos¢

(1) Aa, < by,

Dla n =1 jest tu réwnosé. Ustalmy n > 1, przyjmijmy stusznosé (1)
dla tej liczby n i starajmy sie wykazac teze 1ndukcy3n@ Aapiy < by,
zapisujac ja rownowaznie jako

(2) At L 90,

Skoro a, >4, to a,+1=a,(1+a,') <a,(1+ ) an, skad
At < AGMan - Jednoczesnie (z zalozenia mdukcyjnego) 22’n > 24an,
Udowodnimy nieré6wnoéé (2), jesli pokazemy, ze (A%/4)an < (24)an  czyli
ze AP/ < 24 czyli

(3) 274 A L1

Jest to prawda dla A = 2; dalej za$, przy zwiekszeniu liczby natural-
nej A o jedynke, warto$¢ wyrazenia po lewej stronie (3) maleje:

T

2

T3

2= (A4 1)1 1 1\5/4 1 1\5/4  /3%\1/4

A AB/4 2 29
Stad stuszno$é pomocniczej nier6wnosci (3), wiec i tezy indukeyjnej (2).
Na mocy zasady indukcji, nier6wnosé (1) zachodzi dla kazdej liczby
naturalnej n > 1. Nier6wnos$¢ a,, < b, wynika z (1) natychmiast.



Zadanie 3. Rozwazmy ciag a, = [n(n+1) — 19| dlan = 0,1,2,... Dla dowol-
nego n # 4 wykazaé, ze:
jesli dla kazdego k < n liczby ay 1 a, sa wzglednie pierwsze, to a,
jest liczba pierwsza.
Rozwigzanie

Odrzucajac symbol wartosci bezwzglednej, oznaczmy
cn=n(n+1)—19;
tak wiec a,, = *¢,. Sprawdzamy, ze ag, a1, as, as sa liczbami pierwszymi,
zas a4 = 1.
Wezmy dowolny wyraz a, badanego ciagu, bedacy liczba ztozona
(n > 4, wiec a,, = ¢, > 1). Nalezy wykazaé, ze a,, ma wspoélny dzielnik

d > 1 z co najmniej jedna liczba sposrdd ag, ..., a,_1. Jest to réwno-
wazne stwierdzeniu, ze ¢, ma wspoélny dzielnik d > 1 z pewna liczba
sposrod cg, ..., Cpoq.

Niech d bedzie najmniejszym dzielnikiem liczby ¢,,, wickszym od 1.
loraz c¢,/d tez jest jej dzielnikiem, wiekszym od 1; zatem d < ¢,/d,
czyli > <c,=n(n+1)—19 < (n+1)% Stad d < n. W takim razie
k=n—de{0,...,n—2}. Rbznica

ehn—c=nn+1)—kk+1)=n—-k)n+k+1)=d2n—-d+1)

dzieli si¢ przez d. Tak wiec d jest wspélnym dzielnikiem liczb ¢,
ick (= cu_q), i mamy to, o co chodzito.
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Zadanie 4. Liczby rzeczywiste x1, x2, X3, x4 sa miejscami zerowymi wielomianu
czwartego stopnia W(z) o wspolezynnikach catkowitych. Dowiesé,
ze jesli x3 + x4 jest liczbg wymierna a xsx4 jest liczba niewymierna,
to 1 + x9 = 13 + 24.

Rozwigzanie

Oznaczmy: A =7 + 29, B=1x3+ x4, P = 12129, R = x314. Niech
W(z) = Zaixi =gz — x1)(x — x2) (2 — 23) (T — 24).
i=0
Wymnazajac i przyréwnujac wspotezynniki, uzyskujemy zwiazki (zwane
wzorami Viéte’a)

as
—_— :$1+ZL‘2+I3+1‘4:A+B,
Gy
a2
— = I1X9 + 1123 + T124 + Tox3 + Toxy + X304 = AB+ P+ R,
Qy
a1
—— = T1X2x3 + T1XoTy + T123T4 + xox374 = AR+ BP,
Qy
Qo
— = r1292374 = PR.
Q4

Niech Q oznacza zbiér wszystkich liczb wymiernych. Z zalozenia,
BeQ, R¢ Q. Stad i z pierwszego, a nastepnie drugiego réownania,
wnosimy, ze A € Q, P+ R € Q. Zatem P ¢ Q. Trzecie réwnanie méwi,
ze AR+ BP € Q. Wobec tego

(A= B)P = A(P+R) — (AR+ BP) € Q.

Skoro za§ A— B € Q, P ¢ Q, iloczyn (A — B)P nalezy do Q tylko
wtedy, gdy A — B = 0. Ta r6wnos¢ jest teza zadania.



Zadanie 5. Niech n bedzie dowolna dodatnia liczbg catkowita.
Wyznaczyé liczbe takich ciagdéw ag, a1, . .., a, 0 wyrazach w zbiorze
{0,1,2,3}, ze
n=ag+ 2a1 + 2%2a5 + ... + 2"a,,.
Rozwigzanie
Zauwazmy, ze w napisanym wzorze ograniczenie (do n) wyktadnikéw
poteg dwojki nie ma znaczenia. Jesli bowiem zachodzi réwnosé

n=ay+2a; +2%a+ ... +2Nay, gdzie N >n,

to wszystkie wspotezynniki a; o numerach i > n sg zerami (bo 2" > n)
— odrzucajac te sktadniki, dostajemy wyrazenie, jak w tresci zadania.
Tak wiec liczba, o ktéra pyta zadanie — oznaczmy ja przez F'(n) — to po
prostu liczba przedstawien n w postaci kombinacji poteg dwojki o do-
wolnych wyktadnikach calkowitych nieujemnych i o wspoétczynnikach
rownych 0, 1, 2 lub 3.

Jedli n jest liczbg nieparzysta, to ap = 1 lub 3. Zamieniajac ten
wspotezynnik (odpowiednio) na 0 lub 2 dostajemy przedstawienie liczby
n — 1; na odwr6t, z przedstawienia liczby parzystej n dostajemy (przez
zwickszenie o 1 wspélezynnika ag) przedstawienie liczby n + 1. Zatem

(1) F(2k+1) = F(2k) dla kazdego k > 1.

Niech teraz n > 4 bedzie liczba parzysta; n = 2k. Wezmy dowolne
jej przedstawienie w postaci danej w zadaniu; oczywiscie ag = 0 lub 2.
Suma
a + 2ay + 2%a3 + ... + 2" ta,

jest wowezas dopuszezalnym przedstawieniem liczby $(n — ag), réw-
nej k, gdy ag = 0, badZ réwnej k — 1, gdy ag = 2 (niektore potegi dwdjki
przekraczaja k, ale to nieistotne, w mysl uwagi uczynionej na wstepie).

Tak wiec kazde przedstawienie liczby 2k w wymaganej formie po-
wstaje z pewnego przedstawienia liczby k (przez pomnozenie przez 2
i dotaczenie sktadnika ag = 0), badZ tez z pewnego przedstawienia licz-
by k — 1 (przez pomnozenie przez 2 i dotaczenie sktadnika ag = 2). Wy-
nika stad zaleznos¢ rekurencyjna

(2) F(2k) = F(k)+ F(k—1) dla kazdego k > 2.



Latwo znalezé wartodci bazowe F(1) = 1, F/(2) = F(3) = 2. Oblicza-
jac kilka nastepnych wartosci, odgadujemy wzor jawny
(3) F(2k+1)= F(2k) =k +1; réwnowaznie: F(n)= {%J + 1.

Wystarczy wykazaé, ze funkcja F'(n), okreslona wzorem (3), spetnia
zalezno$¢ (2). Sprowadza sie to do prosciutkiego sprawdzenia réwnosci
k+1= ([£]+1)+([552]+1). Jej prawastronato (5+1) + (52 +1)
dla k parzystych oraz (% + 1) + (k—;l + 1) dla £ nieparzystych. W obu
przypadkach jest to liczba k + 1. To dowodzi stusznosci wzoru (3), ktory
daje odpowiedz na postawione pytanie.

Zadanie 6. Dany jest trojkat ABC. Punkt K jest srodkiem boku BC', punkt M
lezy wewnatrz boku AB. Prosta KM przecina prosta AC' w takim
punkcie L, ze punkt C lezy miedzy A i L. Punkt N jest érodkiem
odcinka LM. Prosta AN przecina okrag opisany na trojkacie ABC
w punkcie S # A. Wykazaé, ze jesli S # N, to okrag przechodzacy
przez punkty K, N i S jest styczny do prostej BC'.

Rozwigzanie

Najpierw pokazemy, ze punkt N lezy miedzy punktami K i L. Niech
J bedzie punktem symetrycznym do M wzgledem punktu K. Tréjkaty
KBM i KCJ sy przystajace. Zatem

JACJ = SJACB + <KCJ = <ACB + <KBM < 180°.
Stad wynika, ze J lezy miedzy K i L, czyli KL > KJ = KM, i w kon-
sekwencji srodek N odcinka M L znajduje sie na odcinku K L. Mamy
wiec konfiguracje, jak na rysunku: punkty A i N lezg po przeciwnych
stronach prostej BC' (natomiast uporzadkowanie punktéw A, N, S na
prostej AN moze by¢ rézne).

Niech P bedzie punktem symetrycznym do A wzgledem punktu N;
tworzy sie réwnolegtobok AM PL. Mamy réwnosci katéw wpisanych
w okrag (ABC):

ISCB = <SAB = <PAM, ISBC = SSAC = SAPM
(ostatnia réwno$¢ wynika z réwnoleglosci AL||M P). Tréjkaty BSC
i PMA sa wiec podobne. Podobienstwo, ktére przeksztalca pierwszy
z tych trojkatow na drugi, przenosi srodek K boku BC' na srodek N
boku PA. Stad wynika podobienstwo trojkatéow SKC i MNA, i w na-
stepstwie — rOwnos¢

180° — XK' NS przy kolejnosci A, N, S,
WSKC=xMNA=*KNA= { KNS ;5 kolejnoéci A,S,N.



Wezmy pod uwage okrag, przechodzacy przez punkty K, N, S. Punk-
ty A i C leza po jednej stronie prostej K N. Niezaleznie od kolejnosci
punktow A, N, S, uzyskana rownosé prowadzi (na podstawie twierdzenia
o stycznej i cieciwie) do wniosku, ze prosta BC' jest styczna do tego
okregu.




